LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

THIRD SEMESTER - NOVEMBER 2015

MT 3875 - MATHEMATICAL FINANCE MODELS

	Date: 14/11/2015 Dept. No. Max.: 100 Marks Time: 09:00-12:00	
Aı	swer ALL Questions. All question carry equal marks.	
1.	(a) (i) Explain Geometric Brownian motion. OR	
	(ii) Briefly explain doubling rule with an example. (5)	
	(b) (i) State and Prove Arbitrage theorem. OR	
	(ii) An individual who plans to retire in 20 years has decided to put an amount A in the bank at the beginning of each of the next 240 months, after which she will withdraw Rs. 1000 at the beginning of each of the following 360 months. Assuming a nominal yearly interest rate of 60 compounded monthly, how large does A need to be? (15)	he
•	(a) (i) Prove that the No arbitrage option cost C is decreasing in Strike price K. OR	
	(ii) Explain delta edge arbitrage strategy. (5) (b) (i) Derive the No arbitrage option cost using the Black Scholes formula. (15) OR	
	(ii) For two investments, first of which costs the fixed amount C_1 and the second fixed price amou	ınt
	C_2 . If the present value from the first investment is always identical to that of the second	nd
	investment, then either $C_1 = C_2$ or there is an arbitrage. (15)	
	3. (a) (i)Explain in detail, the conditional value at risk. OR	
	 (ii) Suppose an investor with capital x can invest any amount between 0 & x; if y is investe then y is either won or lost, with respective probabilities p &1-p. If p>1/2, how much shou be invested by an investor having a log utility function? (5) (b) (i) Assuming a General Distribution for the size of a jump, prove that, No – arbitrage cost =E[C(s_t, J(t),K, , r)] C(s, t, K, , r) No arbitrage option cost= 	
	$C(s,t,K,\uparrow,r) + s_t^2 \left[e^{-\frac{1}{2}t(1-E[J^2])} - e^{-2\frac{1}{2}t(1-E[J])} \right] \frac{1}{2s\uparrow\sqrt{2\prod t}} e^{-w^2/2}$	
	OR	
	(ii) Prove that in call options on dividend paying securities, for each share owned, a fixed amoun D is to be paid at time t _d . (15) (a) (i) Exploin Pote of Poturn with single period Geometric Provenien motion	1t
	4. (a) (i) Explain Rate of Return with single period Geometric Brownian motion. OR	
	(ii) Derive the value of s_i in capital assets pricing model. (5)	
	 (b) (i) Estimate the volatility parameter when the collection prices follow Geometric Brownia motion using Opening and Closing data. OR 	an

(ii) Given three investment projects with the following return functions i) $f_1(x) = \frac{10x}{1+x}, x = 0, 1, \dots \text{ii}) \ f_2(x) = \sqrt{x}, x = 0, 1, \dots \text{iii}) \ f_3(x) = 10(1 - e^{-x}), x = 0, 1, \dots \text{.}$ When we will yield maximum return for we have 5 to invest. (15)

5. (a)(i) Explain the Gambling model with Unknown Win Probabilities.

OR

- (ii) Explain barrier call option with a specified strike price. (5)
- (b) (i) Derive the pricing Exotic options by simulation.

 $\cap \mathbb{R}$

(ii) Derive the option cost for options with Nonlinear payoffs. (15)
